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The average number of nearest-neighbor (NN) contacts {m ) of self-avoiding walks (SAW’s) on a hy-
percubic lattice is calculated using direct enumeration and 1/d expansion methods, where d is the spatial
dimension. These calculations are compared with exact analytic determinations for the asymptotic num-
ber of random-walk (RW) self-intersections in the limit of long chains n— oo. The number of RW
(binary, ternary, etc.) self-intersections is a function of the probability C,; that a RW escapes from the
origin to infinity and an accurate tabulation of C; is given in the dimension range 2 <d <10. We find
that the number of SAW NN contacts {m )saw has an asymptotic behavior ({m )saw~a . n) similar to
that for the number of RW self-intersections ({m )gw~agwn), as first suggested by Domb, but the
corrections to this leading scaling differ for the RW and SAW problems. The “contact amplitude” a,,
determined from direct enumeration data and ratio extrapolation, exhibits a maximum near d =3 di-
mensions as does agw. Comparison of the numerical estimates for a,, to the 1/d expansion calculation
of a., shows significant deviation for d <5, reflecting the strong fluctuations in contacts that arise in
lower dimensions. The correction to the scaling exponent A,, for SAW NN contacts exhibits a max-
imum near d =2 dimensions, a behavior similar to previous observations for the SAW exponent y. Esti-
mates of the 8 point for interacting SAW’s, the critical temperature of the O(m) model, and other lattice
constants (e.g., bond and site percolation thresholds) are obtained in terms of SAW and RW lattice pa-
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rameters.

PACS number(s): 05.40.+j, 05.50.+q, 05.70.Fh

I. INTRODUCTION

A short-range interaction is incorporated into the self-
avoiding-walk (SAW) model of polymer chains by parti-
tioning SAW’s into equivalence classes of chain
configurations of length n having m nearest-neighbor
(NN) contacts [1-11]. Chain properties are then calcu-
lated as an appropriately weighted average over these
configurations (see Sec. IT).

The present paper describes the average number of
SAW contacts {m )gaw and compares these results with
the number of unrestricted random-walk (RW) binary
self-intersections {m )gw. Domb first suggested the anal-
ogy between these SAW and RW properties, but his pre-
dictions [12] have apparently never been tested before.

Domb has shown that many aspects of the critical
behavior of spin models (e.g., Ising, Heisenberg, spherical
models) can be understood in terms of the geometry of
self-avoiding paths [12]. Two parameters are primary in
these relations—the SAW connectivity constant u
(SAW) and the number of SAW contacts {m )gaw. The
connectivity constant governs the asymptotic growth of
the number of SAW chain configurations Q, with chain
length n [13],

lim (Q,)'/"~u(SAW) . (1.1)
n— oo

The existence of this limit has been established [13] and
many numerical estimates of u (SAW) have been made
for a variety of lattices [14]. The number of NN contacts

S1

(m )saw has been subject to more limited investigation,
although the importance of this parameter was recog-
nized in the earliest studies by Orr [1], Fisher and Skyes
[2], and Fisher and Hiley [3a]. Apart from the funda-
mental interest in the number of SAW contacts in the es-
timation of the critical temperature of spin models [12]
and other applications (see Sec. VI), the number of SAW
contacts is important in modeling the thermodynamic
properties of polymers in solution. The average chain
internal energy and specific heat are proportional to the
average and variance of m, respectively [3,5,15]. There
are also practical applications of (m) to modeling
fluorescence decay experiments in polymer solutions [16].
SAW contacts have been of recent interest in the context
of protein folding and knotting in polymers [17,18].
There are, thus, a variety of motivations for the study of
(m)saw-

Domb noted that the average number for self-
intersections of a random walk {m )gw obeys a simple
scaling relation for long chains [12],

(m)Rw~aRWn +ban¢+cRW, n—o , (1.2a)

where the exponent ¢ describes “fluctuation corrections™
to the leading extensive term, and agw, brw, and crw
are constants. The exponent ¢ exhibits the dimensional

dependence
6=(4—d)/2, (1.2b)

and can be recognized as the ‘“Gaussian crossover ex-
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ponent” in a renormalization group context [19]. Appli-
cation of (1.2a) is restricted to d >2 and d#4. Domb
further argued [12] that “‘the structure of contacts on a
SAW follows the same pattern as on a random walk...,”
but with a changed crossover exponent corresponding to
¢ in (1.2a). Specifically, he suggested that (m )gaw
should have the asymptotic scaling [12,13]

(m)saw~aqn ‘*‘bwnAm'H«‘w, n—owo, (1.3a)

where a , b, and c, are constants. The SAW cross-
over exponent A, is estimated by Domb [12] as,

A,d=2)=1, A, (d=3)=%. (1.3b)
The decreased A,, for SAW’s relative to ¢ for RW’s is at-
tributed to the decreased probability of ring closure in
SAW’s [12].

Section II presents calculations of a ,, for a range of di-
mensions d = 1, including noninteger values. The “con-
tact amplitude” a, is found to have an unanticipated
maximum near three dimensions. The maximum number
of SAW contacts m,, for a chain of length n is also es-
timated and approximations relating a ., to other lattice
constants are introduced. A 1/d expansion for a is
given and compared to the lattice extrapolation value.
The correction to scaling exponent A, is estimated nu-
merically, and the corresponding exponent A, for com-
pact SAW’s is determined. Section III considers the
number of RW self-intersections. Exact values of agw
are calculated, and we find that agy also exhibits a max-
imum near d =3. The calculation of agyyw necessitates
evaluating the escape probability C; of a RW from the
origin to infinity; CJ is tabulated since accurate estimates
of this quantity have independent interest in other appli-
cations (see Appendix A). In short, the scaling (1.3a) sug-
gested by Domb is found to be satisfied, although the
specific numerical values of the constants, such as A, in
(1.3b), are different than Domb’s estimates. Section IV
briefly considers the role of lattice variation on SAW con-
tacts, and Section V discusses the estimation of the “fluc-
tuation exponents” (A, and ¢) in some detail. Finally,
the SAW and RW lattice parameters are applied in Sec.
VI to develop approximations to other fundamental lat-
tice parameters. In particular, the critical temperature of
the O(m) model for all m (O<m <« ) and d =3 is ap-
proximated in terms of u (SAW) and C; and compared
to numerical data for the critical temperature of the Ising
model. The 6 point of SAW’s is then estimated based on
this information and some additional assumptions. Other
basic lattice parameters are approximated by RW data,
such as the bond and site percolation thresholds on hy-
percubic lattices.

II. NUMBER OF SAW CONTACTS

Although a SAW by definition has no self-
intersections, there are NN contacts corresponding to ad-
jacent vertices of the SAW path, which are not connected
by a bond. The energetic interaction in the SAW model
is introduced by associating a Boltzmann weight to these
NN contacts [1-11]. The average number of SAW con-

tacts (m) is obtained by counting all SAW
configurations having n bonds and classifying these
configurations into “equivalence classes,” which share a
common number of contacts m.

In a previous paper [9], we obtained the exact SAW
partition function of interacting SAW’s in d dimensions
for chains up to n =11. The partition function Q,(x) is
the weighted sum

Q,(x)= iﬂx C,mx™, x=exp(®), 2.1

m =0

where the C, ,, correspond to the number of SAW’s of
length n having exactly m contacts. The C, ,, are poly-
nomials in the spatial dimension d, which can be treated
as continuously variable [9]. Baker and Benofy [20] have
shown that this type of analytic continuation in dimen-
sionality is equivalent to the dimensional continuation of
continuum field theories, so that a comparison between
the two approaches is appropriate. (Reference [9] tabu-
lates the C, ,, coefficients for 2 <d <6.) The generating
function parameter x in (2.1) is the Boltzmann weight for
SAW configurations, and @ is the associated dimension-
less NN interaction energy in kzT units. A positive
value of ® implies an attractive NN interaction.

The C, ,, coefficients in Eq. (2.1) contain a wealth of
information relating to polymer chain thermodynamic
properties. For example, the “susceptibility exponent” y
in dimension d has been numerically estimated from the
C, n in a previous paper [10]. The SAW exponent y is
defined as a correction to the leading approximation Eq.
(1.1),

Q,(®=0)~[u(SAW)]"n7 "1 . (2.2)

Another paper [11] begins with the C, ,, coefficients and
evaluates thermodynamic properties such as the specific
heat and the energetic dependence of u(®). Some of
thes;: prior results are utilized below in our discussion of
(m).

The average number of contacts for NN interacting
SAW’s (m ) equals

(m)=d[InQ,(x)]/d (Inx) , (2.3a)

and Egs. (2.1) and (2.3a) allow us to express {(m ) directly
in terms of the C, ,, and the energy parameter x,

m max

(m)="3 mC, ,x"/Q,(x), (m(®=0))=(m)gay -

m =0

(2.3b)

In the limit of a highly attractive interaction, {m ) ap-
proaches its maximum value

lim {m)~m,, , (2.3¢)

X —> 0
corresponding to the number of contacts of “compact”
SAW’s. (See below for explicit estimates of m ,,.)
A. Direct enumeration estimates of SAW contacts

The asymptotic variation of {m )gaw for n large is es-
timated by assuming the scaling form Eq. (1.3a) suggested
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FIG. 1. SAW contact parameters as a func-
tion of dimension where (@) denotes extrapo-
lation estimates of the contact amplitude a.,
[see Eq. (2.4)], (A) denotes the connectivity
constant decrement Su=[u(SAW)
—uw(NAW)Ju(NAW) [see Eq. (2.15)], and (M)
denotes Lim, _, ,(C, ,/nC,,) [see Eq. (2.11¢)].
The solid curve represents the 1/d expansion
Eq. (2.14) of a, .

by Domb for the infinite chain limit of {m )gsw,

lim ({(m )saw/n)=a, . (2.4)

n— oo

This procedure is summarized elsewhere [1,2,7] for lat-
tices in d =2 and d =3 and, consequently, we do not
reproduce these details. Figure 1 displays the a,, values
obtained from Eq. (2.4) for a range of d values. (The cir-
cles in Fig. 1 and the dashed line denote an interpolation

of the lattice data estimates.) The estimates of a,, from
Eq. (2.4) are summarized in Table I. Below we make a
refined estimate of a ., in the process of determining the
corrections to scaling in Eq. (1.3a).

The calculation of a ., reveals an interesting and unan-
ticipated behavior. The coefficient a ., exhibits a max-
imum near d =3 dimensions. Apparently, the number of
contacts for a long SAW chain is maximal in three di-
mensions because of two competing effects. In high di-

TABLE I. SAW contact parameters: d,,b,,C.,A,,,D,(1),8u.

d a, [Eq. (2.4)] b, Cu A a, [Eq. (2.9)] D, (1) 8’
28 0.1592:40.0008 0.18 —0.56 0.25%3:42 0.158540.0005 0.105+0.001 0.1389
2.5 0.19£0.02
3® 0.201+0.001 —0.55 0.06 0.15+0.05 0.2014+0.0008 0.113+0.001 5 0.1520
3.5 0.1940.005 —4.0 35 0.05%38% 0.1948+0.0010 0.107+0.0004 0.1480
4¢ 0.174+0.0015 —0.005¢ 0.176+0.0015¢ 0.100+0.002 0.1386

—0.001°¢ 0.179+0.0015"
4.5 0.160+0.0015 —0.40 0.159+0.0015 0.0926+0.001 5 0.1227
5 0.141+0.001 —0.38 0.140+0.001 0.0862+0.0010 0.1123
5.5 0.125+0.001 —0.33 0.124+0.001 0.0802+0.000 8 0.1017
6 0.111£0.001 —0.28 0.110£0.001 0.0747+0.000 6 0.0929
6.5 0.099+0.001 0.0697+0.000 6 0.0845
7 0.0892+0.0008 0.0654+0.000 4 0.077 8
7.5 0.0814+0.0008 0.0615+0.000 3 0.0719
8 0.0744+0.0006 0.0580+0.0003 0.067 1
85 0.0691+0.0004 0.0549+0.000 2 0.06307
9 0.064210.0004 0.05209+0.000 15 0.059 56
9.5 0.0600+-0.0004 0.04948+0.000 15 0.055 55
10 0.056140.0003 0.04721+£0.000 10 0.052 80

s 1/2d

in <22.

*n < 16.

°n <12.

«m),/n=a,+b, /Inn.

«(m),/n=a,+b,lInn

fFrom our previous estimates [9] of wu(SAW) and wu(NAW). D (m)=lim,_ ,D,(m), D,(m)=C,,/[C,,0"],

S =[(SAW)/u(NAW)] — 1.
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mensions, a, is governed by the probability R] of the
walk returning to origin (see below), so that there is a
well-defined average “period” between successive exclud-
ed volume interferences (see Appendixes A and B). The
number of SAW contacts decreases in lower dimensions
(d —1+) because the possibility of contacts diminishes
as the chain becomes “stiffer”” from spatial constraints
(see Sec. IV). This tendency is obvious in the extreme rod
limit of a SAW (d =1) where there are no self-contacts.
The maximal contacts occur for an intermediate dimen-
sion of d = 3.

Once a ., is estimated from Eq. (2.4), conventional ex-
trapolation techniques provide refined estimations of the
parameters in Eq. (1.3a). We form, prior to the deter-
mination of A,,, the difference y, ={(m )gow—a,n and
get rough estimates of ¢, (and b, ) by examining the

. . A .
linearity of y, versus n ™ for suitable A,,. We then
evaluate the ratios

A, =ny,/y,—,—1)/2, (2.5)

where y,=(m )saw—a,n —c, and we determine A,
using Neville tables for linear and quadratic extrapolants
of A,,. Somewhat refined values of the prefactors can be
estimated by exploiting the A, versus n ™ plots with the
use of this modified A,,. Lattice constants obtained from
this procedure are given in Table I. The exponent A,, is
exg)ected to be negative for d > 4. Thus, the contribution
n " becomes negligible, and b, is assumed to vanish for
d > 4. Hence, the constant ¢, in Eq. (1.3a) is the leading
asymptotic correction in high dimension d >4. Numeri-
cal examination of {m )g,w in high dimensions (d >4) is
found to be consistent with the simple asymptotic rela-
tion

(mdsaw~a,n+c, . (2.6)

We see that the values of ¢ in Table I slowly decrease
with increasing dimension. The magnitude of ¢, can be
roughly appreciated by noting that a SAW on a hypercu-
bic lattice cannot have a contact unless # = 3. Applying
the exact result {m )gow =0 for the extreme case of n =2
to the asymptotic limit Eq. (2.6) yields the rough approxi-
mation for d >4,

Co=—a,/2. 2.7

The qualitative validity of Eq. (2.7) (see Table I) reflects
the rapid approach of Eq. (2.6) to its asymptotic limit.

The estimation of fluctuation corrections to {m )gaw
requires special care at the “critical dimension” of d =4
(see Ref. [10]). The fluctuation corrections [21,22] for the
analogous problem of RW self-intersections are on the
order of O(lnn) in d =4 (see Appendix B), so we first con-
sider the relation

<m>SAW~awn +b',Inn , (2.8a)

under the assumption that SAW’s are in the RW
“domain of attraction” for d =4. [SAW’s in high dimen-
sion (d = 5) have been shown to behave similarly to RW’s
with short-range interaction [23], but the situation at
d =4 is still uncertain.] Equation (2.8a), however, ap-

pears inconsistent with the lattice data, so we must con-
sider other possibilities. We also tried the alternative
scaling relation

(m)gaw~aon+b, /Inn , (2.8b)

which is suggested to us by renormalization group theory
[19]. The “regularized part” ({m )gaw—a,n) of the
binary contacts might be expected to scale as the dimen-
sionless renormalized binary interaction coupling con-
stant [19] as d —4+. Estimates of @, and b based on
Eq. (2.8b) extrapolate reasonably, and the resultant lattice
constants are given in Table I and Fig. 1. Although this
estimate seems reasonable, the treatment of the contact
fluctuation correction in d =4 requires further attention.

Improved estimates of a ,, are obtained through the ex-
trapolation

Am

lim ({m dgaw—bon "—cy,)/n=a, , 2.9

n-— o
using Neville tables [6,7] where b, A,,, and c, are
determined as indicated above. The new estimates of a
obtained in this manner are also included in Table I. The
resulting revision is small, but such corrections are im-
portant in obtaining refined estimates of a , .

The final numerical estimates of A,, are shown in Fig.
2. We observe that the fluctuation exponent A, exhibits
a maximum near d =2. This observation is quite similar
to our previous numerical investigation [10] of the SAW
exponent ¥ [see Eq. (2.2)], and below we exploit this ob-
servation to obtain a phenomenological estimate of
A, (d).

An alternative expression for SAW NN contacts is ob-
tained by formally expanding {m (®)) in a Taylor expan-
sion in X,

(m)= (dXm)/dx))|,_ox’/j!.

j=0

(2.10)

It should be noted that small x corresponds to a repulsive
NN interaction and x =0 corresponds to the neighbor-

Am

0.2

0 . . . . .
1 2 P 3 4

FIG. 2. Correction to the scaling exponent A,, for SAW con-
tacts where (@) denotes extrapolation estimates from Table I
and the solid curve indicates Eq. (5.10) with v obtained from
Egs. (3.4b) and (3.4¢) (see Fig. 9).
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avoiding walk (NAW) limit where {m ) =0. The leading
term in the expansion Eq. (2.10) equals [3]

(m)=D_(1)nx+0(x?), x—0+, (2.11a)

D, (1)=1lim (C, ,/nC,,) . (2.11b)

n— o
The constant D _ (1) was estimated by Orr [1] and Fisher
and Hiley [3a] for square and cubic lattices and was
found to have a value of roughly 1. The new estimates of
D (1) in Fig. 1 show a similar variation with d as a,.
This connection is natural if we note that D (1) corre-
sponds to a ., for x =1 (i.e., SAW’s) when higher order x
contributions are neglected in Eq. (2.11a).

The ratio C,,/nC, o approaches its asymptotic limit
rather rapidly and this remarkable behavior led us to
study the generalized ratios

D_,(m)= lim (C,,, /n™C,,),

n— oo

(2.11¢)

which require longer chains and the Monte Carlo evalua-
tion of the C, ,,. This numerical study will be reported
elsewhere [24].

Although our primary focus in the present paper is
(m )saw, We note that a similar scaling relation to Eq.
(1.3) holds for the maximum number of SAW contacts.
Orr [1] and Fisher and Hiley [3a] found that m_,, [see
Eq. (2.3b)] obeys the simple asymptotic relation for long
chains,

My ~a.n, n—o, a.=(q—2)/2, (2.12a)
where g is the lattice coordination number. For hypercu-
bic lattices, a, =d —1. This asymptotic estimate of m
neglects surface sites, which yield a reduced number of
NN contacts. Since the number of surface sites of a com-
pact object scales with mass n as n'? 14 we should

then have the more general scaling relation for m

(2.12b)

The expression for m,,, in Eq. (2.12b) can be
quantified by observing that a spiral configuration in
d =2 maximizes the number of SAW contacts (see Fig. 3)
at each step n. We have checked this observation for
Monte Carlo generated SAW’s up to n =50 [24] in d =2
and find agreement between m_, and the number of
spiral SAW contacts. The spiral configuration is not the
only configuration that maximizes the SAW contacts, but
it is apparently a representative configuration. A rigorous
proof of this conjecture would be useful, since it is easy to
write a numerical program to count the contacts of these
ideal compact spiral configurations.

Analytic calculation of m for the compact spiral SAW
is not trivial, however. We have consulted colleagues at
NIST and have obtained two results for the number of
spiral SAW contacts m g, Witzgall [25] determined a
recursion relation relating m g, for successive n, which
yielded an exact solution for d =2 [see Fig. 3(a)],

M i =1 —Int[ — 1+ (n +1)12]—Int[Vn ],

Moy ~a,n +bon"+c,, A, =(d—1)/d .

max

(2.13a)

where Int denotes the integer part of the number in

1795

parentheses. A bound on mg,,, generalized to higher
dimensions was found by McCrackin [26] as
e +d],

M spiral SI“t[acn —d(n+1 (2.13b)

which becomes exact at periodic points at which the
spiral completes a hypercube configuration [see Fig. 3(b)].
Numerical data indicate that Eq. (2.13b) is a rather tight
bound; this approximation for m gy, is presented in Fig.
4. The bound Eq. (2.13b) is exact in d =2, so that the
different looking expressions in Egs. (2.13a) and (2.13b)
(where =< is replaced by equality) are actually equivalent

in d=2. The number of spiral contacts mg,., is
rigorously a lower bound for m ,,, since a spiral is a par-
ticular SAW  configuration. We  believe that

(a)

FIG. 3. Compact SAW spiral. (a) Graph of compact spiral
SAW (thick line) in d =2 with nearest-neighbor contacts (thin
lines) indicated. (b) Compact SAW spiral in d =3 where n =64.
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60 -
- /
so | Mmax) = INT [(@-Dn-d@+D a7 |
40 Jff .

m(max)

n

FIG. 4. The estimate of the maximum number of SAW con-
tacts, mp,,. The curves represent the approximation of Eq.
(2.13c) derived from a tight bound on the contacts of a compact
SAW spiral. Monte Carlo data also produce these characteris-
tic step patterns [24]. The asymptotic limit in Eq. (2.12a) is only
approached for long chains, n ~ 0(10°-10%.

M max = Mgira1 and numerical evidence is consistent with
this identification. [There is some uncertainty at higher
chain lengths from the inability of conventional Monte
Carlo (MC) methods to sample configurations having
maximal contacts for large n so that MC estimates are
found to be less than or equal to mg,,.] Further efforts
are needed to establish the limitations of the approxima-
tion

m . =~Intla.n —d(n +1)A‘+d] ,
a.=d—1, (2.13¢)
A,=(d—-1)/d ,

for hypercubic lattices.

The maximum number of SAW contacts is important
because it governs the internal energy of compact poly-
mers (e.g., proteins [17]) and m_,, is important from a
technical standpoint in the testing MC simulations of
SAW’s. It is generally difficult to sample compact chain
configurations using conventional sampling methods.
The discrepancy between m_,, and numerical estimates
of m_,, gives a measure of how well these compact
configurations are being sampled. A better description of
contacts is also a necessary ingredient in developing im-
proved theories of polymer solution phase separation,
and this problem is a primary motivation for our exam-
ination of SAW contacts (see Sec. VI).

B. 1/d expansion of the SAW contact amplitude a ., (d)

In previous papers, we developed 1/d expansions for
the partition function and mean-square end-to-end dis-
tance of interacting SAW’s [9]. (Earlier 1/d expansion

calculations consider the SAW connectivity constant and
other lattice constants [27,28].) Similarly, we can develop
a,(d)in a 1/d expansion (0 =2d —1)

a (d)=0"'+0 2+703+350*+2500 5+0(c %)
(2.14)

from our exact expansion of the partition function in Egs.
(2.1) and (2.3). The 1/d expansion for a ., (d) is compared
in Fig. 1 with the lattice extrapolation estimates. This
comparison exhibits good agreement in higher dimen-
sions (d =5), but substantial deviations are found in
lower dimensions, reflecting strong fluctuation effects.
The accuracy of the 1/d expansion treatment of
configurational properties can be improved, however, by
combining these calculations with physical reasoning.
For example, if we consider the “connectivity constant”
in Eq. (1.1) as an effective coordination number of the
chain and denote p in the x -0+ and x —1 limits as
u(NAW) and u(SAW), respectively, then we can expect
the average number of contacts per unit chain length a
to be related to the change of the effective coordination
number, u(SAW)—u(NAW). From the 1/d expansion of
HW(SAW)—u(NAW) and Eq. (2.6), this intuition can be
developed into a specific relation between a ., and the lat-
tice connectivity constants [u(NAW), u(SAW)], which is
consistent with the 1/d expansion. Explicitly, we find

a,=du+0(c"?),
Su=[u(SAW)—u(NAW)]/u(NAW) ,

(2.15a)

a,~8u. (2.15b)

This approximation is also motivated by the observation

(3]
w(®)~uw(NAW)[1+D _(1)x +0(x?)], x—0+,
(2.15¢)

and the approximate relation between a, and D (1)
suggested above. Extrapolation estimates of £(SAW) and
u(NAW) over a range of dimensions (1=<d <10) are
given in our previous papers [9,11], and Fig. 5 presents
these results graphically in a new form. The connectivity
constants in high dimensionality approach a simple limit-
ing behavior

WSAW)~g —1, w(NAW)~g—2, d—>oo . (2.16)

In high dimensions, u(SAW) then approaches u for a
nonreversing random walk. The 1/d expansion correc-
tions to the asymptotic relations in Eq. (2.16) are shown
to order o ~° by a solid line in Fig. 5. Again, the expan-
sion breaks down for lower dimensionality (d <5) and we
observe the tendency of the connectivity constants to ap-
proach a common limit asd —1+

L(SAW)~u(NAW)~1, d—1+ . (2.17)

It seems likely that the 1/d expansion could be substan-
tially improved if the limit in Eq. (2.17) were enforced on
the expansion [29].

The estimate of SAW contacts obtained from the con-
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FIG. 5. The SAW connectivity constants as a function of di-
mension where (@) and ( A) correspond to SAW’s and NAW’s,
respectively. The solid lines denote fifth order 1/d expansions
for the connectivity constants, and the dashed lines are an inter-
polation of the lattice data.

nectivity constant decrement 8u [see Eq. (2.15)] is com-
pared with extrapolation estimates of a ., in Fig. 1. We
observe improved agreement between the 1/d expansion
and the extrapolation data, but the relation between a
and &y is not quantitative in lower dimensions. Compar-
ison of @, and 8y is given in Sec. IV for other lattices.

For completeness we note that p(®) can also be calcu-
lated by 1/d expansion in the limit of strong attraction
[30]. The compact walks in the ®— co limit are Hamil-
ton walks, and the 1/d expansion of py,,, equals

Biam =(P— 0 )=ge "'[1+072/6+0(c )],
(2.18a)

This expansion is presented only in an implicit form in
previous work [30]. The leading order ¢ ! correction
vanishes [31] and the approximation

PHam~ge " (2.18b)

gives accurate numerical estimates even in d =2 [32-34].
This success is natural given the small fluctuations exhib-
ited by these compact lattice walks.

We further exploit this method of developing nonper-
turbative approximations for lattice constants in Sec. VI,
where estimates of the critical temperature of the Ising
model, the 8 point of SAW’s, and other basic lattice con-
stants are obtained.

III. NUMBER OF RW SELF-INTERSECTIONS

The self-intersection properties of random walks have
been studied extensively by both mathematicians and
physicists. Erd6s and co-workers [21,22,35] pioneered
the rigorous theory of geometrical RW properties. Mon-
troll and Weiss [36] and others made further contribu-
tions to the quantitative theory and initiated applications
[37] of RW “recurrence properties,” which showed the
physical significance of RW fluctuations. The present
section relies heavily on these previous contributions.

The leading order contribution to the number of RW
self-intersections can be obtained from the fundamental
works of Erd6s and Taylor [21] and Montroll and Weiss
[36]. Erdds and Taylor first proved that the average
number of points ¥,, visited by a RW at least m times
(i.e., m-multiple points) asymptotically equals

V,~Cx(1—CH™ 'n, d>2, n—ow, (3.1a)

where CJ is the probability that an infinite random walk
does not return to the origin. (The “escape probability”
C; is a fundamental RW property whose evaluation is
discussed in Appendix A.) Later, Montroll and Weiss
[36,39] formally showed that the number of RW points
visited exactly m-times V,, has an additional CJ factor

V, ~(CHX1—C)" 'n, d>2, n—w (3.1b)

and this relation was rigorously proven by Pitt [38].

The number of random-walk points where intersection
occurs exactly twice {m )gw then asymptotically equals
(Vm=2=(m )RW)

(m)gw~(CHH1—C})n, d>2, n—ow (3.2a)

or

apw=(CHX1—C}) . (3.2b)

The prefactor suggested by Domb [12] is not consistent
with this exact result, however.

There are apparently no exact tabulations of CJ for
variable d that allow a direct estimation of agw. Mon-
troll [39] (see Appendix A) derived a widely cited asymp-
totic 1/d expansion for CJ, but this expansion is unreli-
able for low dimensionality as in the case of @, expan-
sion discussed in the previous section. Gerber and Fisher
[27a] developed a formal perturbation expansion (see Ap-
pendix A) of the equivalent of CJ about d =2 dimen-
sions. This expansion is rather badly behaved, however,
since d =2 is a point of nonanalyticity for CJ (see Ap-
pendix A). Table II presents our calculated values of CJ
for a hypercubic lattice over the range 2<d <10 in di-
mensional increments of 0.1 based on the numerical eval-
uation of an integral defining C; (see Appendix A) and
C; is plotted as a solid line in Fig. 6. We observe that CJ
is approximated to within about 1% accuracy by the sim-
ple approximant (dashed line in Fig. 6)

Cr=~2d—2)/[1+2d —2)], d>2,
Cr=0, d=<2.

(3.3a)
(3.3b)

The escape probability for a simple cubic lattice CJ in
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d =3 is known exactly in terms of T" functions [40]
C3=32m/6'’T(L)T()T(L)T(1)~0.6595 - - ,
(3.3c)

and a rapidly convergent expansion and numerical evalu-
ation of the integral defining C} was given by Watson
[41] (see also Joyce [42]).

The calculation of CJ in variable dimension in com-
bination with (3.2b) then allows the determination of
agw- Figure 7 depicts the exact values of agw. As in the
‘“analogous” case of @, a maximum is observed near
d ~3. Figure 7 also provides the number of RW points
occupied exactly m times. It is emphasized that the fluc-
tuation term in Eq. (1.3) becomes large as d —2+ and
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this term predominates for d <2 (see Appendix B). Fig-
ure 8 presents dgw =CJ(1—CJ), corresponding to the
RW points occupied at least twice. This contact ampli-
tude @Ry is more sharply peaked and has a maximum be-
tween d =2 and d =3.

Although the dimensional variation of agyw and a, is
similar for high d, there is an important difference in
lower d. The RW contact amplitude ary vanishes for
d —2+, while a ,, vanishes as d —1+. This effect can be
understood from the increased “swelling” of SAW chains
in lower dimensions. It is well known that mean-square
dimensions (R2) of SAW chains numerically obey the
scaling relation

(R)~n?, n—w , (3.4a)

TABLE II. Escape probability of a RW in d dimensions.

d c* d cx

0.0 0.0

2.0 0.0

2.1 0.139343 167 321 667 6.1 0.897 557907 581 660
2.2 0.249 784 577 109 877 6.2 0.899 729 641244915
2.3 0.338 781361513679 6.3 0.901 806 574 846 221
2.4 0.411531535324035 6.4 0.903 794 975 719 400
2.5 0.471751480834671 6.5 0.905 700 562 597 621
2.6 0.522 156 543992 630 6.6 0.907 528 568 654 530
2.7 0.564 768 297 750 299 6.7 0.909 283 790676 521
2.8 0.601116760617 114 6.8 0.910970 632 999 663
2.9 0.632376 874454916 6.9 0.912593 147 129 646
3.0 0.659 462 670449 368 7.0 0.914 155065915371
3.1 0.683093 523276 651 7.1 0.915 659 834 299 400
3.2 0.703 841 586 138 598 7.2 0.917110636535314
3.3 0.722 166 287 348 678 7.3 0.918 510420410 504
34 0.738439774241 148 7.4 0.919 861918 845 346
3.5 0.752965922012 112 7.5 0.921 167 669 189 067
3.6 0.765994 701 893 923 7.6 0.922 430030489 467
3.7 0.777733 158441 878 7.7 0.923 651198976 838
3.8 0.788 353879116902 7.8 0.924 833221 970 940
39 0.798 001 588 655 984 7.9 0.925978 010392 889
4.0 0.806798 326 773 548 8.0 0.927 087 350 040 607
4.1 0.814 847545430 144 8.1 0.928 162911 752269
4.2 0.822237374786415 8.2 0.929 206 260 678 894
4.3 0.829043 244310804 8.3 0.930218 864473517
4.4 0.835329999 767 192 8.4 0.931 202 100989 095
4.5 0.841 153623 315 606 8.5 0.932 157265069071
4.6 0.846 562 639013 749 8.6 0.933085574 802418
4.7 0.851599 267370396 8.7 0.933 988 177 207 667
4.8 0.856 300378 525 860 8.8 0.934 866 153 417 009
49 0.860 698 282 929 189 8.9 0.935720523410817
5.0 0.864 821390179 332 9.0 0.936 552250347290
5.1 0.868 694 760 369 504 9.1 0.937 362244 526 960
5.2 0.872 340567 360247 9.2 0.938 151367027 440
5.3 0.875778 489 567 597 9.3 0.938920433039938
5.4 0.879 026 040 835 594 9.4 0.939670214 935725
5.5 0.882098 851578 119 9.5 0.940401 445087 726
5.6 0.885010882 507973 9.6 0.941 114818469 775
5.7 0.887 774759519 103 9.7 0.914 810995053 775
5.8 0.890401 689981293 9.8 0.942 490 602 022 884
5.9 0.892901 873 295 648 9.9 0.943 154235817074
6.0 0.895284 504 370 825 10.0 0.943 802 464 025 732
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FIG. 6. The escape probability of a simple
RW in d dimensions, Cf. Solid line denotes
exact values (Table II) and the dashed line cor-
responds to the approximation from Eq. (3.3).
CJ is also the reduced critical temperature of
the spherical model [see Eq. (6.1a)].

FIG. 7. The self-intersection amplitude for
RW’s, agw=(C})H1—CJ). Asymptotically,
the number of RW double points {m )rw
scales as (m )pw~agrwh, n— . We also
plot(CH)YX1—C})" ™!, corresponding to the
number of m-body contacts per unit chain
length. The number of higher order contacts
is appreciable in high dimensionality. Com-
pare m =2 case with a, data in Fig. 1.

FIG. 8. The self-intersection amplitude for
RW’s, @gw=CJS(1—CJ). The number of
binary intersection points that are occupied at
least twice scales asymptotically as,
V,y—2~@gwn, n— . Notice the maximum
becomes sharper and moves closer to d =2 in

comparison with agw in Fig. 7.



1800 JACK F. DOUGLAS AND TAKAO ISHINABE 51

where v is apparently piecewise analytic in d [10]. We re-
cently obtained estimates of the SAW exponent v in vari-
able dimension as [10], ¢=(4—d) /2,

v=1 d>4, (3.4b)

NI

¢/(2v—1)=~4[1—2¢6/3+¢*/6], 1<d<4,
(3.4¢)

Figure 9 displays the dependence of v on dimension from
Eq. (3.4) in comparison with our extrapolated lattice
enumeration estimates of v [10]. The variation of v for
d <4 can be expected to change the escape probability
C; for the self-avoiding paths from the RW value (see
Appendix A). '

Nothing is known about CJ(SAW), but exact calcula-
tions are possible for generalized RW’s (e.g., Lévy
flights), which also have v variable. For example, CJ for
Lévy flights with a range of v values have been calculated
by Joyce [43a] for d =1 and d =2 in connection with the
spherical model with long-range interactions (see Table
IIT and Sec. VI). Interpolation of Joyce’s results for
different v, yields the estimate C*(d =2;v=3)~0.77 for
Lévy flights with v taken as the SAW value. This corre-
sponds to agw~0.14 for these generalized random
walks, which is contrasted with the vanishing of agy, for
ordinary NN RW’s in d =2. Joyce’s calculation also in-
dicates that C*(d =1;v—17) vanishes (Table III); thus,
agw(d =1;v—1%) should likewise vanish as for SAW’s.
These observations are consistent with the vanishing of
a . in a lower d than agy because of the increase in v as
d is lowered (see Sec. IV). A numerical calculation of the
escape probability C; for SAW’s in d =2,3,4 and of
Lévy flights having variable v in d =3 would be useful in
obtaining a better understanding of the observed dimen-
sional variation of a,. In summary, apart from the
“stiffening effect” on SAW’s in lower dimensionality, a
and agrw vary similarly, and the observed differences are
a natural consequence of the variation of v for SAW’s in
lower dimensions.

Figure 7, however, indicates a remarkable difference
between lattice RW and continuum RW self-intersection

1.0 T : - v T

0.9+

0.7 } 1

0.6 1

FIG. 9. The extrapolation estimates of SAW size exponent v.
The lattice data (@) for v in variable d is obtained in a previous
paper [9]. The solid curves indicates Eq. (3.4c) and the (W)
points for d > 4 indicate extrapolation estimates, which include
analytic corrections to scaling calculated from a 1/d expansion
while the other points do not include the corrections. See Ref.
[10] for further details.

properties. The lattice RW’s have an appreciable number
of many-body (m >2) self-intersection points in d =3
and higher dimensions. Continuous RW models are
rigorously known to have no triple and higher order in-
tersection points [35] (with probability one) in d >3.
This fundamental difference between lattice and continu-
um RW’s arises because the escape probability of a con-
tinuous RW does not gradually increase with spatial di-
mension as for lattice walks. Indeed, the probability of a
continuum limit RW (Wiener path) to ‘“escape” Cj

TABLE III. Generalized escape probability C(d,v), Lévy Flights.

x=1/dv C(d=1,v)? (1—x?2)*73 C(d=2,v)? (1—x?2)7/15

0.0 1.000 1.000 1.000 1.000
0.1 0.992 0.992 0.994 0.995
0.2 0.968 0.968 0.977 0.981
0.3 0.927 0.927 0.950 0.957
0.4 0.870 0.870 0.914 0.922
0.5 0.796 0.794 0.868 0.874
0.6 0.702 0.700 0.812 0.812
0.7 0.585 0.584 0.744 0.730
0.8 0.439 0.442 0.66 0.621
0.9 0.252 0.265

1.0 0.0000 0.0000 0.0000 0.0000

?See Ref. [43].
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jumps discontinuously from zero for d <2 to unity for
d>2 (see Appendix A). The higher order self-
intersections for continuum RW’s, thus, have no measur-
able consequence for d 3. The Wiener path model is,
thus, somewhat unreliable for discussing many-body in-
teractions [44] in lattice chains and for presumably real
polymer chains, which are spatially extended objects rath-
er than volumeless filaments. In light of this observation,
the higher order m-body contact interactions should be
examined more closely in the lattice SAW model to see if
these interactions are likewise more significant than con-
tinuum model calculations have led us to believe.

IV. LATTICE DEPENDENCE OF SAW CONTACTS

The lattice constant a ., which governs the average
frequency of NN contacts, depends sensitively on lattice
structure. We briefly indicate this effect in Table IV us-
ing literature estimates of a ., for various lattices. The
1/d-expansion calculations of a,, on hypercubic lattices
[see Egs. (2.14) and (A9)] show that a . approaches the
return probability R} of the random walk to the origin in
high dimensions,

a,~R}~1/2d, d—o , @.1)

and agw also approaches this same asymptotic behavior
[see Eq. (3.2b)] since Rf=1—CJ. From Eq. (4.1), we
might naively expect that a, should be smaller for
higher coordination number lattices since R} varies in-
versely to the coordination number g on a hypercubic lat-
tice R} ~1/q (g =2d) for high dimensionality. The ta-
bulation of @, data in Table IV does not agree with this
expectation, however. In fact, a , has a relatively small
value (a , =0.064) for the low coordination number dia-
mond lattice and a relatively large value (a , =0.72) for
the high coordination number fcc lattice. Evidently, the
variation of the SAW contact amplitude a ,, is dominated
by other factors in lower d.

We can obtain some insight into the observed variation
of a, by considering the minimum number of steps
necessary for a walk to produce a NN contact A ;.. The
“minimum contact length”” A_; is 3 for hypercubic lat-
tices (d > 1). Apparently, if ¢ >2d, then A; <3, while if
q <2d, then A_; >3 (see Table IV). We also define
A,=1/a, as the “average period” of NN interferences.
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(See Appendix B for discussion of this periodicity in the
RW case.) The tabulation of A, and A, values (Table
IV) shows these parameters vary in a qualitatively similar
fashion. Thus, the increased persistence length over
which excluded volume interferences occur becomes
larger for lower coordination number lattices. This in-
creased persistence length for “coarse” (low coordination
number) lattices acts very much like an increased chain
“rigidity.” This important effect deserves further discus-
sion.

The influence of such short-range chain correlations on
the escape probability of RW’s has been investigated by
Daley [45a], who considers the calculation of CJ for
RW’s with a modification in the persistence of the RW to
take a step along the direction of the proceeding step. A
parameter a is introduced, which when taken to ap-
proach — 1+, corresponds to walks that never have two
consecutive steps in the same direction, while the limit
a—1— produces an enhanced probability of continuing
a step in the direction of the previous step. The case
a=0 corresponds to a simple unrestricted RW. If we
denote the escape probability of the unrestricted walk as
C3 =C3(a=0), then the escape probability of Daley’s
correlated walk equals [45a)

Ci(a)=q.C3 /[q.+t2a—aC3], gq(cubic)=q,=6
(4.2a)

for “cubic-type” lattices (simple cubic, fcc, bec). The lim-
its a— —1+ and a— 1— for a simple cubic lattice give
limiting modified escape probabilities,

CH(—1)=6C% /[4+C$]1~0.8492 - - ,
C%(1)=6C% /[8—C?]=~0.5390 " - - ,

(4.2b)
(4.2¢)

where the exact value of C} is given in Eq. (3.3c). The

exact C3 for the tetrahedral lattice equals [46]
C3 (tet)=(3)2!"37*/9[T'(1)]6~0.5578 - - -, (4.32)

while the cubic-type lattice escape probabilities are larger
[36,40,42,46]:

C}% (simple cubic)=~0.6595 - - -
C}(fcc)=4C}% (tet)/3=0.7437 - - -
C} (bec)=4m*/[T(1)]*~0.7177 - - - .

(4.3b)

TABLE IV. SAW lattice constants for various lattices.

Lattice coordination ¢ e Ao=1/a, Amin Sp HU(SAW) n(NAW)
fcc 12 0.74%,0.72¢ 1.4 2 0.55 10.035¢ 6.46
Cubic 6 0.18%,0.201 5.3 3 0.15 4.6835 4.065
Diamond 4 0.064° 16 5 0.05 2.8790 2.73
Triangular 20 0.59¢ 1.7 2 0.46 4.152¢ 2.84
Square 3 0.16%¢ 6.3 3 0.14 2.6385 2.316

?See Ref. [15a].
bSee Ref. [3a].
°See Ref. [7].
9See Ref. [12].
°See Ref. [104].
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We then observe that the change of Cj from simple cubic
lattice to the tetrahedral lattice is similar to the change of
CJ observed for the cubic lattice in the a—1— limit in
Daley’s correlated random-walk model [see Eq. (4.2)].
Similarly, the increased chain rigidity (lattice induced
short-range correlations) upon lowering the dimension ul-
timately causes a ., to approach zero as d — 1+, since the
SAW reduces to a nonintersecting rod in this limit. High
coordination lattices such as the fcc lattice in d =3 exhib-
it an opposite tendency to the low coordination lattices.
The high coordination number of the fcc lattice, for ex-
ample, leads to a tendency for greater chain ‘“‘coiling”
and a ., achieves a remarkably high value 0.72 [12]. This
effect is similar to taking a negative in Daley’s model
where an increase in CJ is obtained [see Egs. (4.2b) and
(4.3b)]. Finally, we mention that the connectivity con-
stant decrement 8u [see Eq. (2.15) and Table IV] for vari-
ous lattices generally follows the variation of @ ,, with lat-
tice type, confirming the qualitative approximation Eq.
(2.15a).

The “granularity” of the lattice structure, which has a
profound effect on lattice parameters (see Sec. VI)
[u(SAW), T.(Ising), @ ,,, * * - ], is a caricature of the pack-
ing constraints on molecular positioning. Real polymer
chains, for example, have constrained bond angles and
constraints arising from the presence of surrounding mol-
ecules (solvent molecules in the idealized SAW model).
The optimal choice of lattices to model the small scale
granularity of real condensed phases requires further
study.

V. FLUCTUATIONS IN RW SELF-INTERSECTIONS
AND SAW CONTACTS

The calculation of corrections to scaling for {m Ygaw
in Sec. II is based on the analogy between SAW contacts
and RW self-intersections suggested by Domb [12] [see
Egs. (1.2) and (1.3)]. This relation is potentially quite use-
ful because the recurrence properties of random walks
can be calculated exactly [21,47], and it might be possible
to extend a similar theory to SAW’s (see Sec. VII). In
this section we reconsider the form of the fluctuation
corrections for {m )z where v is variable (Lévy flights)
and we compare these results to our numerical estimates
of the fluctuation corrections to {m )g,y obtained in Sec.
II. In the final part of the section, we briefly discuss the
dependence of fluctuation corrections of {(m )y on
chain topology and the relation of these corrections to
the polymer excluded volume problem.

In leading order, the number of RW binary self-
intersections {(m )gw depends on the RW escape proba-
bility CJ [see Eq. (3.2a)] and, more generally, the calcula-
tion of the fluctuation corrections for {m )y requires
the determination of the “survival probability”
C(d,n)—the probability that a RW does not return to
the origin before the nth step (see below). Unfortunately,
the exact calculation of C(d,n) is difficult and we resort
to considering the simpler problem of calculating the
leading order fluctuation corrections for C(d,n). This
task is made simpler by exploiting an exact relation be-
tween C(d,n) and the number of distinct sites visited by a

RW, (S,), a quantity investigated extensively [21,22,
35,36]. Calculations of the fluctuation corrections for
(S, ) are not available for variable d and v and results re-
lating to these cases are found by considering the contin-
uum analog of (S, ), the volume of the Wiener sausage
(%Y, (defined below). Exact calculations for the fluctua-
tion corrections for (%,) with d and v variable are
known and these results allow us to estimate the {m )pyw
fluctuation corrections for variable d and v. Domb’s pre-
vious suggestion [12] for these corrections are recovered
by these arguments and in the process we obtain some
geometrical insight into the fluctuation corrections to
RW self-intersections.

Fluctuation corrections to many random-walk proper-
ties are naturally expressed in terms of the RW survival
probability C(d,n) and an exact discrete integral equa-
tion [21] for C(d,n) is discussed in Appendix A. The es-
cape probability CJ of the previous section corresponds
to the limit [21,22]

C}=1lim C(d,n),

n—

(5.1

since the paths that “survive forever” are those that “es-
cape to infinity.” Erdés and Taylor [21] discuss the order
of magnitude of the leading order corrections to the
asymptotic scaling in Eq. (5.1) in integer dimensions.

Precise estimates of fluctuation corrections have been
studied for the related random variable (S, ). These re-
sults are relevant to the present problem because (S, ) is
simply an average of C(d,n) [22],

(8,)= 2 C(d,k) . (5.2)
k

=1

This relation exists because C(d, k) is also the probability
that the nth step takes the RW to a previously unvisited
site (see Appendix B). The average (S, ) has been calcu-
lated for a variety of lattices in d =3 because of associat-
ed physical applications: Here we mention Joyce’s calcu-
lation [42] of (S, ) for a simple cubic lattice, d =3,

(S,)~C¥n+4[(3/2m)3*n'2)(C}

+[81(C})*/8m*+ LICY +0(n 17, (5.3)

where C73 is given by Eq. (3.3c). Some liberty has been
taken in rewriting Joyce’s results in our own more con-
cise notation involving C3. (Joyce also gives the
O(n ~1/?) term explicitly, but this term is unnecessary for
the present discussion.) Inserting the numerical value of
C7 into Eq. (5.3) gives

(S,)~0.659n +0.574n'24+0.450+0 (n "12) .  (5.4a)

Monte Carlo estimates [48] of (S, ) are rather consistent
with this asymptotic series estimate,

(S, (num))~0.662n +0.525n'/24+0.501 . (5.4b)
n

A connection between RW self-intersections and (S, )
is obtained by noting that the number n of steps taken
minus (S, ) equals the number of points of multiple oc-
cupation M, (“redundant points”):
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(M,)=n—(S,) . (5.5a)

Since binary self-intersections are the predominant type
of multiple occupation point for d > 2, the average (M, )
is closely related to {m )gw. For long chains (M, )/n
and (S, ) have the limiting behavior

lim ({M,)/n)=(1—C}),

e (5.5b)
(S 1

lim ——=1lim |[— Y C(d,k) |=CJ .

n—s o n n— oo nk=1

This result holds generally in d dimensions, d > 2. Equa-
tion (4.3) implies that the fluctuation corrections to
(M, ) in d =3 are on the order O(n'/?) in accord with
Domb’s suggestion, Eq. (1.1). Figure 10 presents the con-
tact amplitude (1—CJ) for redundant points. Bleris and
Argyrakis [48b] show numerically that the fluctuations of
RW self-intersections can be estimated accurately by for-
mally replacing C} in Eq. (3.2) by (S,)/n for finite
chains. This is a natural approximation given the close
relation between (M, ) and {m ) ry.

Calculation of fluctuation correction in d dimensions
(d >2) is complicated by the difficulty of calculating of
(S,) in d dimensions. Exact calculation is possible,
however, for the continuum analog of (S, ), the volume
of the Wiener sausage [49] (see Appendix B). The Wiener
sausage corresponds to the average volume (%, ) swept
out by an object undergoing Brownian motion where the
volume of previously visited regions is not counted [49a,
50]. In the limit of vanishing time n, the sausage volume
(Y, ) reduces to the particle volume, but {V, ) follows
Spitzer’s limit theorem, d > 2,

lim (V) /n~Cn +(d /2m)?*n*C*/$(1—¢)+O(const)

n-—

(5.6)

for large n where C is proportional to the capacity of the
diffusing body [49a, 49b]. Spitzer [35¢,49a] notes that C}
is the lattice analog of the continuum capacity, which ex-
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plains the origin of our notation for the RW escape prob-
ability. We observe that the leading order fluctuation
correction to (S, ) in Eq. (5.3) corresponds to the simple
fluctuation correction to (‘V,,) for d =3, and this rela-
tion should hold generally for hypercubic lattices.
[Daley’s discussion of the leading order fluctuation
corrections to {S,) [45a] shows that the constant
(d /2m)%/? must be modified for other lattices.] Equation
(5.6) then implies that fluctuation exponent (crossover ex-
ponent) for random-walk self-intersections should equal
¢=(4—d) /2, as suggested before by Domb [12].

Extension of the Wiener sausage calculation to general-
ized random walks (Lévy flights) with variable v provides
an exact estimate of the exponent ¢(v), which is useful in
comparison with SAW’s where v is also variable. The ex-
ponent ¢(v) for Lévy flights equals [51]

o(v)=2—dv, d>1/v. (5.7)

Moreover, Eq. (5.6) still applies with ¢(v) replacing ¢, the
return probability constant (d /27)?/? suitably modified
for Lévy flights, and the capacity C also modified for this
class of paths [51,52]. The exponent ¢(v) for Lévy flights
can be recognized as the “specific heat” exponent (more
properly the “virial coefficient” exponent in a polymer
context [19]),

a=2—dv, d=4
d=4.

Domb estimated a and A,, for SAW’s in d =3 and d =2
and found these exponents to be equal, as in the case of
Lévy flight RW’s. Equations (5.7) and (5.8) then suggest
an approximation for the SAW fluctuation exponent

A, =2—dv, d<4.

(5.8)
a=0,

(5.9a)

The leading order e-expansion estimate of v [see Eq. (3.4)]
in conjunction with Eq. (5.9a) yields an estimate of A,, in
accord with Domb’s values [see Eq. (1.3b)] in d =2 and
d=3,

0.9
» ©
[¢]

0.8
[
- 0.7 FIG. 10. The amplitude for number of
" redundant points, lim({M,)/n)=1—C},
L 0° which equals the number of points a RW occu-
g pies more than once divided by the chain
PN length for large n and the return probability of
g 0 4 a simple random walk to the origin. The
- difference 1—C; also corresponds to the
Hs0.3 spherical model estimate of p_(site) [80] (see
o Sec. VI).

0.2

0.1

0.0
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A, =¢/2+0(8?), ¢=¢€/2. (5.9b)
Using v from Eq. (3.4¢c) in Eq. (5.9a) yields
A, (d=3)=0.235, A,(d=2)=1. (5.9¢)

Unfortunately, these estimates of A, based on the RW
analogy are only roughly consistent with the lattice
enumeration data in Table I and Fig. 2 and the depen-
dence of A,, on d evidently requires further thought.
Simple considerations show that Eq. (5.9a) cannot be
correct in lower dimensions where there are important
qualitative differences between SAW’s and RW’s on ac-
count of the rigidity effect discussed in Sec. IV. A SAW
in d =1 is perfectly extended so that A, must vanish,
while RW’s in d =1 do not have this constraint and self-
intersect intensely. An improved estimate of A,, can be
obtained by relating A,, to other SAW exponents, which
similarly reflect the increased rigidity of SAW’s in lower
d. The SAW exponent y—1 vanishes as d —1+ for
similar reasons as A,, [10] and Ref. [10] suggests the ap-
proximation y =(d /2)(3v—1), which is exact in both the
d—1+ and d —>4— limits. Based on these previous ar-
guments, we introduce an ad hoc approximation for A,,,

A,=d3v—1)/2—1, 1<d<4, (5.10)

corresponding to A, =2 ~0.147 and | for d =3 and
d =2, respectively (see Fig. 2). We conclude that the
contact fluctuation exponent A,, varies quite differently
than the fluctuation exponent for RW self-intersections,
even in the case where v is taken to have SAW values.
This discrepancy is expected because of the non-Markov
nature of SAW’s and in Sec. VII we discuss a generalized
theory of Feller [47a], which can be applied to the fluc-
tuation corrections of correlated RW’s. In the final part
of this section, we make some comments regarding some
applications of RW self-intersection fluctuations to the
problem of excluded volume interaction in flexible poly-
mers and the dependence of self-intersection fluctuations
on the RW chain topology.

The average number of “redundant points” in the con-
tinuum model (M (n))=n —{Y,) can be directly ex-
pressed in terms of a notation conventional in polymer
physics,

(M(n))~(1—C)n
1 n n ! ’
+Cz<§ fo drfo d7'8(R(7)—R(T ))>

+O(const) , (5.11)

which is useful in generalizations to RW’s having re-
stricted topology (see below). The average { ) is taken
with respect to continuous Gaussian chains (Wiener mea-
sure), 8( ) is a & function, and R(7) denotes the position
vector of the continuous chain path at a contour point 7
along the chain. This configurational average arises in
the calculation of the polymer chain partition function
0, in leading order perturbation theory for the excluded
volume interaction [53]. The result for the
configurational average for a linear chain is presented in
Eq. (5.6). The configurational integral in Eq. (5.11) is sen-

sitive to chain topology, and this term for a ring polymer
even has a different sign than the corresponding linear
polymer term. These configurational integrals have been
investigated extensively because the leading order e-
expansion estimates of the susceptibility exponent y [see
Eq. (2.2)] are also determined by the configurational aver-
age in Eq. (5.11), and results for various cases are summa-
rized by Cherayil, Douglas, and Freed [53] (ring, chain
constrained to begin and end on a surface, star). Our
main point for the present discussion is that the fluctua-
tion correction to {m )Ry is sensitive to chain topology,
and the same can be expected for {m )gaw. The contact
amplitudes agw and a, (d =2) should be invariant to
these topological variations, however. These topological
effects deserve further investigation.

VI. RW AND SAW CRITICAL CONSTANTS,
CRITICAL PHENOMENA, THE 6 POINT
OF INTERACTING SAW’S

It is well known that the universal critical behavior of
many systems undergoing phase transitions can be relat-
ed to the geometrical properties of RW’s and SAW’s.
The present paper is largely motivated by Domb’s calcu-
lations [12] of O(m) spin model (m =1, Ising; m =2,
XY, - - - ) properties in terms of the geometrical proper-
ties of SAW’s and we briefly mention some theoretical re-
sults relating these walk properties to various kinds
of critical phenomena, including the 6 point of self-
interacting SAW’s and the critical temperature of the Is-
ing model for hypercubic lattices.

The critical temperature of the spherical model
T,(spherical) can be expressed in terms of the Green’s
function [43,54] for lattice random walks. Translating
into our notation, T, (spherical) equals

kg T, (spherical)/J =Cjq , (6.1a)

where J is the magnetic NN exchange energy. Equation
(6.1a) is exact and reduces to the mean-field (Bragg-
Williams or Bethe approximation [27b], Gaussian model
[54(b)]) in high dimensions

kyT,(MF)/J =¢q , (6.1b)

since CJ(d — o )=1 (see Fig. 6).

The physical origin of the shift of T, from its mean-
field (MF) value deserves comment. Near the critical
point of a fluid mixture there is a clustering phenomenon
of the phases and the phase within these diffuse “drop-
lets” has a reduced coordination number for interactions
with the other phase [55—-57]. This effect can be appreci-
ated by considering linear chain “clusters” as an idealiza-
tion. The extended chain modification of Eq. (6.1b)
amounts to simply replacing g by g —1 as noted by Flory
[58a] in his modeling of T, for polymer solutions. The
counting becomes more involved for self-intersecting
random-walk “clusters,” which are closer to the physical
situation of real critical clusters. The extensive RW self-
intersection produces a reduction of the average coordi-
nation number. The fraction of RW points occupied at
least once asymptotically equals Cjn so that C; times
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the coordination number of each lattice site provides an
estimate of “mean coordination number” per segment for
the RW chain. This geometrical estimate of the effective
coordination number corresponds to the spherical model
T, in Eq. (6.1a). With this qualitative physical picture in
mind, we next consider the critical temperature of the
O(m) model in terms of an effective coordination number
related to SAW and RW parameters.

The O(m) model encompasses a wide range of physical
models of phase transitions and other critical phenomena
[12,27]. The SAW model corresponds to m —0, the Ising
model (m =1), the XY model (m =2), the Heisenberg
model (m =3), and the spherical model (m — ). We
generalize Eq. (6.1) by defining the “effective coordina-
tion number” u(m) of the O(m) model

wm)=[J/kpT,(m)]" ", (6.2)

which follows naturally from Domb’s treatment [12] of
the O(m) model in terms of SAW’s with NN interactions
weighted with topological factors reflecting the order pa-
rameter dimension m.

Gerber and Fisher [27a] obtained the 1/d expansion
for the equivalent of u(m), and combining this result with
the 1/d expansion for CJ (see Appendix A) gives

um)=Clq{1+[1—m /(m +2)]o 2
+0(0c™ %)}, o=2d—1 (6.3)

for hypercubic lattices. [Equation (6.3) can be thought of
as an expansion about the spherical model limit rather
than the usual Bragg-Williams limit.] The SAW connec-
tivity constant corresponds to the m —O0 limit and we
have the identity

wim =0)=u(SAW) (6.4a)
and the spherical model limit (m — o ) corresponds to

ulm—ow)=Crq . (6.4b)

Since accurate estimates of u(SAW) are known, it is use-
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ful to reexpress Eq. (6.3) to include this nonperturbative
information. Using the 1/d expansion of u(SAW) [9,27]
allows us to rewrite Eq. (6.3) as

p(m)=u(SAW)
X{1+[m/(m +2)][Cfq —u(SAW)]/u(SAW)
+0(0c7 %)}, (6.5)

which gives an explicit approximation to the critical tem-
perature of the O(m) model entirely in terms of the
geometrical properties of random and self-avoiding walks.
Equation (6.5) is constructed to be exact in the m —0 and
m — oo limits, and Fig. 11 shows that u(m) is a rather
slowly varying function of m. The data points in Fig. 11
provide estimates for the critical temperature of the Ising
model in various dimensions, and the corresponding nu-
merical estimates [59] are given in Table V.

The expansion about the spherical model limit in Egs.
(6.3) and (6.7a) becomes problematic in d =2 dimensions
since simple RW’s become recurrent in this dimension.
Indeed, T,(m >2)=0 for d <2 because of this recurrence
property [60]. Domb [12] and Domb and Smart [61] has
developed an alternative expansion about the SAW limit
(m —0), which is useful in lower dimensionality. If we
denote the high temperature series expansion parameter
as o,

a):Im/Z(J/kBT)/Im/2~1(‘]/kBT) 3 (6.6)

where 1,, ,, is a modified Bessel function, then Domb’s es-
timate of the critical temperature for the O(m) model is
determined as a series in u(SAW) and SAW contact pa-
rameters

o, '=u(SAW){1—3f(m)a, /u*(SAW)
+0(u"3(SAW))]} ,
fm)=m?/(m+2), m=1,23.

(6.7a)
(6.7b)

The leading order term in Eq. (6.7a) has been conjectured

FIG. 11. The critical temperature of the
O(m) model in variable dimension where (@)
denotes lattice model estimates of 7, from
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Table III. The solid lines denote approximant
Eq. (6.5). Data and curves correspond to hy-
percubic lattices.
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TABLE V. Basic lattice constants.

d T, (Ising) T.(Ising)
p.(bond) WTC (MF) _Tc (MF) WSAW)/q L(NAW)/q
Ref. [78] Ref. [59] Eq. (6.5) Ref. [59] (see Fig. 5)

2 1722 0.567 296 0.6595396 0.579 13

3 0.248 8 0.7519040 0.740 0.7806512 0.6775

4 0.16005 0.835210 0.834 0.846 500 0.739

5 0.11819 0.877 832 0.877 0.883 86 0.7940

6 0.094 20 0.902912 0.902 0.906 567 0.8291

7 0.078 685 0.91922°

8 0.067 70

9 0.059 50

2See Ref. [105]. ®See Ref. [106).

to be exact by Temperly [62a] on the basis of numerical
evidence, and this conjecture is discussed critically by
Fisher and Sykes [2], who show that Temperley’s conjec-
ture o, '=u(SAW) is not exactly true. The factor f (m)
in Eq. (6.7) is evidently poorly behaved for large m, and
we resort to the approximation f(m)=1 for the interest-
ing case of the Ising model (m =1). Our ad hoc
modification of Domb’s expression Eq. (6.7) then becomes

L(SAW)

_1z
1+3a,, /u*(SAW)

c

Ising model . (6.8)

’

Table VI shows that Eq. (6.8) gives good estimates of the
critical temperature of the Ising model even in d =2. Es-
timates for other types of lattices are included in Table
V1, and all the data agree with Eq. (6.8) to within 2% ac-
curacy. Again we find a representation of the critical
temperature of the Ising model in terms of the geometry
of SAW paths.

The arguments above for the critical temperature of
the O(m) model can be developed further to obtain a use-
ful estimate of the 6 point temperature Ty for NN in-
teracting polymers. There are strong arguments (not
rigorous proof, however) that the phase separation of po-
lymers in a small molecule solvent is described by the Is-
ing universality class [63]. Our approximation for Ty as-
sumes this relation is true. The 6 temperature T, for

long isolated polymers in solution equals the critical tem-
perature for polymer solution phase separation T, in the
Flory-Huggins theory. This theoretical prediction holds
to a good approximation experimentally [64], and we also
assume T, =T, for long chains n — . The critical tem-
perature for a binary mixture of NN interacting mole-
cules having identical sizes follows from Eq. (6.5) as

8§=T_.(Ising) /T .(MF) , (6.9)

since there is an exact mapping between the Ising model
and the binary mixture problem [65]. Table V shows that
8 is nearly 2 in d =3. Equation (6.9) simultaneously de-
scribes the phase separation of small molecule binary
mixtures, the liquid-vapor phase transition and magnetic
Ising models on hypercubic lattices, where each atom is
idealized to occupy a lattice position [66]. Moreover, the
ratio in Eq. (6.9) is rather insensitive to lattice type for the
common lattices [27,67] and corresponding ratios for the
SAW connectivity constant are summarized by Cherayil,
Douglas, and Freed [53]. [The ratio 8 in Eq. (6.9) ap-
proaches unity with increasing range of the interaction
potential and experimental estimates of this ratio in real
systems could provide information on the range of the lo-
cal pair potential.]

Equation (6.9) certainly requires modification of
T.(MF) when passing from the small molecule mixture to

TABLE VI. T,(Ising) as a function of SAW lattice constants.

a, L(SAW) H(SAW)
d 1/w.=tanh(J /kzT,) (see Table IV) [14+3a, /U SAW)] Ref. [14]
Ref. [27] Eq. (6.8)
_ Hypercubic lattice
2 1+v2=2.41" - - 0.1592 2.47 2.6382
3 4.58 0.201 4.56 4.683
4 6.72 0.174 6.70 6.775
5 8.83 0.141 8.82 8.832
6 10.87 0.111 10.86 10.873
Other lattices
fce 9.828* 0.72 9.824 10.035
Diamond 2.83* 0.0638 2.81 2.878
Triangular 3.73205* 0.59 3.77 4.1515

*See Ref. [104] and Fig. 5.
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a polymer solution. The effective coordination number
u(SAW) of the chain in high dimensions is reduced due to
chain connectivity (see Fig. 5)

u(SAW, d—»>w)=qg—1, (6.10a)

thus explaining the physical basis of the mean-field result
for the 6-point energy ®, of interacting SAW’s [68]

D MF)=1/(g—1) . (6.10b)

We modify the exact result Eq. (6.9) for small molecule
phase separation by requiring that the mean-field result
Eq. (6.10b) is recovered as d — o, which leads to the ap-
proximation

O,~1/(g—1)8, T,=Ty, n— o (6.11)

where 8 is defined by Eq. (6.9). The estimate § for a cubic
lattice from Table V yields 8(cubic)=0.7519, and Eq.
(6.11) then implies

®4(cubic)~0.266 . (6.12)

This estimate of the 6 point agrees very well with numeri-
cal determinations [4,69,70] of the SAW 6 point, ®4lcu-
bic; num)=~0.269. We further observe that since & is
nearly constant [27] (‘“quasiuniversal” [53]) for the com-
mon three-dimensional lattices 8(d =3)~ 2, we may ob-
tain the simpler approximation

Py=4/3(q—1), d=3, (6.13a)

which compares favorably with the MC estimate of ®g,
found by Mazur and McCrackin [153],

Py(MC)=1.375/(q —1) (6.13b)

for a variety of three-dimensional lattices. Estimates of
the critical energy ®, for other dimensions follow from
Egs. (6.9) and (6.11).

The escape probability CJ governs the critical temper-
ature in other phase transitions. For example, the critical
temperature for adsorption of a polymer (RW) onto a
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penetrable surface of dimension d is determined [71] by
C;_ dy- The description of polymer adsorption onto im-

penetrable surfaces of dimension d involves a generaliza-
tion of C; for walks in the presence of an absorbing
boundary [72]. There are also a variety of localization-
delocalization transitions determined by Cj. Examples
include the critical binding of electrons to defect sites in
lattices [73], the binding of defect atoms to a lattice posi-
tion due to a critical mass difference [74], the localization
of spin waves by lattice defects [75], and electron locali-
zation in disordered materials [76].

There is also a natural relation between the geometrical
properties of RW’s and SAW’s, and lattice percolation.
As in the case of the O(m) model, we can define an
effective coordination number for lattice percolation [53]
and develop the 1/d expansion about the spherical model
limit. For example, consider bond percolation on a hy-
percubic lattice and define u(bond) as the reciprocal of
the bond percolation threshold [53]:

w(bond)=[p,.(bond)] ! . (6.14)

The 1/d expansion for p.(bond) is known [77], and we
can combine this expansion with that for CJ (Appendix
A) to obtain the modified 1/d expansion

ubond)=(C}q)[1—c~2/2+ ---]. (6.15a)

We observe that the leading order 1/d corrections van-
ishes [see Eq. (2.18)] for u(bond), and we can expect the
approximation

u(bond)=~CJgq (6.15b)

to be accurate for d > 2. This expectation is borne out in
Fig. 12, where the best numerical estimates [78] of
p(bond) for hypercubic lattices are compared with Eq.
(6.15b). Excellent agreement is observed for d =3, but
the approximation breaks down for d -2+ as in Eq.
(6.3). The approximation Eq. (6.15b) evidently suggests a
relation between the fraction of RW paths that escape to
infinity and the number of “percolating paths’ that span

p.(bond) = 1/Cy g

FIG. 12. The estimate of the hypercubic lat-
tice bond percolation threshold where (@)
denotes precise numerical estimates [78] of
p.(bond) and the solid line denotes the approx-
imation Eq. (6.15b), p.(bond)=~1/C[q.
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the system. The leading order ‘“mean-spherical model
approximation” for pu(bond) in Eq. (6.15b) was obtained
previously by Given and Stell [79].

Similar arguments can be made for site percolation.
By inspection of the 1/d expansions for bond and site
percolation [77], we observe a simple relation between the
bond and site percolation thresholds:

p.(site)=[g —u(bond)]/q +0 (o 3) . (6.15¢)

A further simplification of our estimate for p, (site) can be
obtained by introducing the additional approximation
Eq. (6.15b) into Eq. (6.15¢) to obtain

p.(site)=~1—C} . (6.15d)

Equation (6.15d) (see Fig. 10) is known to be a rather
good approximation in high dimensionality (4 <d) and
corresponds to the mean-spherical model approximation
for p,(site) [80].

The resistance properties of regular resistor networks
in d dimensions also exhibits a striking relation to
pbond) and RW properties. Vineyard [81a] has shown
that the resistance R between a node at the origin and
another at a great distance on a cubic lattice of resistors
equals

R=(1/C;q)Q, d>2, (6.16a)

where ) denotes ohm units. Each resistor in the net-
work, situated on the “edges” of the lattice, is taken to
have unit resistance (1Q2). We, thus, obtain the numerical
approximation of R from Eq. (6.15b)

R~p,(bond)Q, d>3, (6.16b)

which links the resistance properties of regular resistor
networks to percolation theory. This relation is very in-
teresting when generalized to defective lattices, where R}
(or CJ) becomes a function of bond dilution. Equation
(6.16) also has basic significance in polymer physics when
the equivalence between network resistance and the di-
mensions of Gaussian polymer networks is recognized
[82,83]. Eichinger [83] has shown that a d,,-dimensional
network of RW chains of equal length has the mean-
square radius of gyration {S?2) [see Eq. (6.16a)]:

<S2>=<R2)0/c;mq, qg=2,, d,>2, (6.17)
where (R?) is the mean-square end-to-end distance of a
RW network chain. (R?), defines the unit of length as
the unit resistor defines the resistance scale in the corre-
sponding resistor problem [82].

This section provides a sampling of phase transition
phenomena, which can be interpreted in terms of the
geometrical properties of RW’s and SAW’s. Domb’s
original study of the critical temperature T,(m,d) of the
O(m) spin model in terms of SAW properties [12] sug-
gested to us that this geometrical point of view might
give insight into a variety of critical constants, so we ex-
amined this possibility. The critical temperature of the
spherical model T,(m — «,d) is first shown to be exactly
related to the RW escape probability C;. (This result
was found previously by Joyce [54a], but apparently this

result is not widely known.) A geometrical interpretation
of T,(m— ,d) is given in terms of an idealized RW
model of critical clusters. This point of view is developed
further into a nonperturbative expression for the critical
temperature T,(m,d) in terms of RW and SAW parame-
ters. The derivation of this result utilizes a perturbative
1/d expansion of T,(m,d), where improved accuracy is
obtained by the procedure of shifting the 1/d expansion
to be about the spherical model rather than the Bragg-
Williams mean-field theory reference point. Very good
results were also obtained for the bond and site percola-
tion thresholds by shifting the reference point for the 1/d
expansion. This idea is simple and effective.

An examination of the critical phenomena literature
revealed that a variety of critical constants could be ex-
actly related to RW recurrence properties—critical tem-
perature for polymer adsorption, critical binding ener-
gies, resistance of networks, radius of gyration of polymer
networks, etc. The discussion of these problems from the
RW perspective offers new insights into these previously
known analytic results; in cases where exact results are
not known and this viewpoint suggests new approxima-
tions for calculating critical constants. As a nontrivial

“example of this approach, we make a heuristic calcula-

tion of the 8 point of SAW’s and the critical temperature
of high molecular weight polymer solutions, which ac-
cords with numerical estimates of these quantities.

VII. DISCUSSION

The average number of nearest-neighbor SAW con-
tacts {m ) characterizes the average frequency of exclud-
ed volume interferences in a swollen chain. The long
chain limit of {(m )g,w is found to be proportional to
chain length (m )goaw~a ,n, and we study the variation
of a, with spatial dimension. The contact amplitude
a ., as estimated from our direct enumeration data, is ob-
served to have a maximum near d =3 and to vanish in
the d >1+ and d — « limits. Our 1/d expansion of a
for a hypercubic lattice shows that a, decays for large
dimensionality as the return probability R of a random
walk to the origin a , ~RJ ~1/2d. Agreement with the
asymptotic 1/d expansion is only obtained for dimen-
sions higher than four, however. Numerical estimates of
a . for other lattices are examined and a rather sensitive
dependence on lattice structure is found. This sensitivity
is associated with RW’s on relatively high and low coor-
dination lattices (relative to the simple cubic lattice)
adopting relatively coiled and extended configurations,
respectively.

Following some basic observations by Domb [12], sug-
gesting a relation between the SAW contact problem and
the self-intersections of RW’s, we calculate the number of
RW self-intersections {m )gw on a hypercubic lattice ex-
actly for d >2. The number of RW intersections follows
a similar pattern to the SAW’s. The intersection ampli-
tude agry in the asymptotic relations {m )gw~agwn for
binary self-intersections is observed to have a maximum
near d =3 and to vanish as agw ~RJ ~1/2d for high
dimensionality. The constant agy vanishes for d =2 for
RW’s, however. This effect can be understood from the
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change of the polymer size exponent v in lower dimen-
sions, and, indeed, if we consider generalized random
walks (Lévy flights) with v taken to have the values es-
timated for non-Markov lattice SAW’s, then agrw for
these generalized RW’s approaches zero as d —1+ rath-
er than as d —>2+. This accords with the extrapolated
SAW data (Fig. 1).

The fluctuation exponents A,, and ¢ for SAW contacts
and RW self-intersections are estimated by numerical ex-
trapolation and by analytical methods, respectively. The
RW “crossover exponent” equals ¢=2—d/2 for
2 <d <4 so that ¢ monotonically increases toward 1 as
d—2+, reflecting the increased self-intersections in
lower dimensionality. This variation is natural given the
(rigorous) geometric interpretation of ¢ in terms of an in-
tersection dimension as discussed by Rosen [84a]. The
SAW exponent A,,, on the other hand, vanishes both as
d—4— and d—1+ and has a maximum near d=2.
The SAW exponent ¥ has a similar dimensional variation
[10], leading us to introduce a phenomenological approxi-
mation consistent with our lattice extrapolation data,
A, =d(3v—1)/2—1, 1<d <4. Simple scaling argu-
ments suggest that A, should approximately equal the
specific heat exponent a=2—dv for 1 <d <4, but this es-
timate (see also Domb [12]) is found to be too large in
comparison with the extrapolated lattice data. We briefly
discuss the chain topology dependence of the fluctuation
corrections to SAW contacts and RW self-intersections.

The lattice data for SAW’s and RW’s (connectivity
constants, @, CJ, - - - ) are applied to the calculation of
various important lattice constants. We obtain an ap-
proximation of the critical temperature 7,.(m) of the
O(m) model in general dimensionality and compare this
general result to available lattice data. An alternative es-
timate of the Ising model T, involving a, is examined
and is found advantageous in d =2 dimensions. A rather
good estimate is thereby produced for Ising critical tem-
peratures for a variety of lattices. These preliminary re-
sults for the estimation of T,(Ising) in various dimen-
sionalities culminate in an estimate of the 6 temperature
of SAW’s and the critical temperature for phase separa-
tion in solutions of a high molecular weight polymer and
a small molecule solvent. Comparison with experiment
are again rather favorable. The bond percolation thresh-
old of hypercubic lattices 2 <d <9 is found to be approxi-
mated accurately (d = 3) in terms of the RW escape prob-
ability CJ; other related lattice parameters are discussed
such as the resistance of a lattice network.

The Appendixes examine the relation between continu-
um and lattice random walks and the interrelations of
different analytic treatments of the recurrence properties
of RW’s. Appendix A shows that the escape probability
of a continuum random walk varies as a unit step func-
tion, which jumps at d =2, while the escape probability
of lattice RW smoothly increases for d >2 towards 1 as
d — . This difference in continuum and discrete RW’s
leads to significant differences in the intersection proper-
ties of continuum and discrete RW chains, and these
differences are discussed in Sec. III.

Domb’s analogy between RW self-intersections and
SAW NN contacts potentially has other important conse-

quences, which have not been pursued in the present pa-
per. RW self-intersections and their fluctuations can be
exactly described by Feller’s “fluctuation theory of re-
current events” [47a]. The return of the random walk to
the origin, which is related to {(m )rw, is a classical
renewal process discussed by Feller to illustrate his gen-
eral theory. The scaling of (m )gaw Wwith chain length
obtained from our lattice data extrapolations is consistent
with the asymptotic scaling of a renewal process. Feller’s
theory of recurrent events is notably not restricted to ran-
dom walks having uncorrelated steps: Lamperti [85] and
Stone [86] have illustrated the general theory for a class
(“semistable” [85]) random walks having long-range
correlations.

Semistable walks are simply defined by the existence of
a limit end-to-end vector distribution function for long
chains and the property of invariance (in distribution) of
the random-walk curves under the rescaling of the con-
tour length [85]. These scaling properties are often as-
sumed (implicitly or explicitly) in the discussion of SAW
properties based on formal calculational methods such as
the renormalization group method. If we presume that
SAW’s are “attracted” to a universal (semistable) limit
distribution for long chains, then it is quite natural to hy-
pothesize that SAW contacts can be described as a
renewal process. This hypothesis (equivalent to the as-

" sumption that the chain length distance between SAW

contacts is an independent random variable) leads to the
prediction that the probability distribution for SAW con-
tacts is in the domain of attraction of a stable process [47]
of index 2—A,, for 1 <d <4 and should be normally dis-
tributed and be centered about the average {(m )g,yw for
d > 4. The distribution function for contacts and its mo-
ments are fixed by the critical exponent A, (2—a in
Feller’s notation) characterizing the contact fluctuations.
It should be useful to compare the probability distribu-
tion for SAW NN contacts from Monte Carlo data for
long chains with the distribution suggested by Feller’s
renewal theory. The theory of recurrent events appears
promising for characterizing the fluctuations of self-
avoiding chains, which are responsible for the nonclassi-
cal critical exponents for 1 <d <4. The functional limit
theorems of this theory are especially interesting because
they provide a mathematical mechanism explaining the
existence of universality for the SAW exponents—
provided the formulation of the SAW contact problem as
a renewal process can be established.
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APPENDIX A: ASYMPTOTIC PROPERTIES
OF THE SURVIVAL PROBABILITY

The description of the self-intersection number
(m )rw and other properties related to the geometric
structure of RW paths are naturally constructed by con-
sidering the recurrence of a RW to a specified point on an
infinite lattice. Without loss of generality, this specified
point is taken as the origin. If we generate a RW path of
n steps, taken in the available directions with equal prob-
ability (1/2d) at each step, then the probability C(d,n)
that the RW survives (does not return to origin) its first
n —1 steps is a monotone decreasing function of chain
length[22]

C(d,1)=12C(d,2)2C(d,3)=C(d,4)= - - (A1)

Erdos and Taylor [21], and Dvoretzsky and Erdos [22a]
prove that C(d,n) for a RW approaches a limiting ““fixed
point” value

>0.

lim C(d,n)—CJy, d>2.

n—

(A2)

The return of a RW to a point is classic “renewal” pro-
cess [47], and a discrete integral equation for C(d,n) is
obtained by a sum of probabilities (see Eq. (2.11) of Erdos
and Taylor [21] and Feller [47a)),

[n/2]
Cld,n)+ 3 U(d,2k)C(d,n —2k)=1,
k=1

(A3)

where U(d,n) is the probability that the path return at
the nth step and [ ] denotes the ‘‘integer part.”” Erdos
and Taylor [21] and Dvoretzsky and Erdos [22a] describe
order of magnitude estimates for the rate at which the
limit in Eq. (A2) is approaches, i.e., the fluctuation terms.
Feller [47a] in 1949 introduced the term critical ex-
ponent” to describe these corrections to scaling ex-
ponents in his general fluctuation theory of recurrent
events.

The survival probability C(d,n) represents the fraction
of the lattice paths with length » that do not return to the
origin after the n — 1 step. The analog of the lattice RW
“renewal equation” Eq. (A3) for the return to a point in
the limit of continuous paths (Wiener paths) is recently
given by Douglas [87] and solved exactly for general d us-
ing methods of fractional calculus. The exact solution of
Eq. (A3) for various lattices is a more difficult matter, but
the continuum limit calculation illustrates certain asymp-
totic results and physical features of lattice RW models.
The survival probability for Brownian paths C(d,n) with
a short-range interaction and with an endpoint attached
to a “boundary” (a point in the present discussion), is de-
scribed by a Volterra integral equation [87],

Y =1-¢, [T =0 /Tg)lndT,  (Ada)
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Cld,n)=¥(x=1), £,=(z,/u})T(1+¢,), (A4b)
$,=1—d/2, ul=¢, z,=(d/2my"n% (Adc)

which is the continuum limit of Eq. (A3). The generaliza-
tion of Eq. (A4) to an interacting (penetrable) hyperplane
[87] of dimension d, simply involves replacing ¢, by
¢,=(2+d,;—d)/2, and the generalization to Lévy flight
walks with variable v involves replacing ¢, by
¢,=(d;+d,—d)/d;, where d; is the Hausdorff dimen-
sion of the Lévy flight, d,=1/v [87]. The return proba-
bility constant (d/27)?/? in Eq. (A4c) also has to be
changed to the value appropriate for the Lévy flight [87].
The transition from RW recurrence to transience (see
Appendix B) is reflected analytically in the kernel of Eq.
(A4a), which exhibits a corresponding transition from
“weakly singular” to “strongly singular” type [87].

We briefly mention the importance of Eqgs. (A3) and
(A4) for a wide class of physical problems. The survival
probability C(d,n) for Brownian paths in Eq. (A4) has a
direct physical interpretation in terms of the partition
function of a polymer chain interacting with a surface,
and this model exhibits a phase transition when the cou-
pling parameter §, (or §;) changes sign [87]. The order
of the transition depends on ¢, (or ¢,). A formal exten-
sion of Eq. (A4) has also been made for fractal boundaries
using the geometric interpretation of ¢, as the dimension
of (fractal) the Brownian path intersections with the
boundary [88] in the contour coordinate. The integral
equation Eq. (A4) also arises in modeling relaxation in
disordered materials [87c]. Feller [47a] and Darling and
Kac [89a] have shown that Eq. (A4) describes the asymp-
totic survival probability of Brownian paths subject to
general interactions so that the renewal Egs. (A4) and
(A3) have applicability to a wide class of quantum
mechanical and diffusion problems [87], especially ones
involving complicated boundaries.

The exact solution [87] of Eq. (A4) defines the Mittag-
Leffler function:

Ed,m=3 (=&, )/T(1+ke,/2) .
k=0

(AS)

This function is monotone in §, as required by Eq. (A1).
Now if we consult the tabulation of the properties of this
classical transcendental function summarized by Doug-
las, Wang, and Freed [87b], we find that é(d,n—» ) is
piecewise analytic in d. It is easily shown that
C(d,n — « ) for ¢, >0 equals

0, 0<d=2
1, d>2.

(A6a)
Cldyn—o0)= (A6b)
Equation (A6) implies that the return of a typical contin-
uum RW (Wiener path) to the origin is certain for d <2,
while escape of the path to infinity is certain for d >2.
This result is just the continuum limit analog of Pdlya’s
famous theorem for lattice random walks (see Fig. 6):

0, 0<d=<2
C}, 0<Cr=<1, d>2.

(A7a)

C(d,n—>oo)=[ (A7b)
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FIG. 13. The escape probability of a RW
from the origin, CJf where dashed lines denote
expansions about d =2 and d — «.

Lattice RW’s return to origin (paths are recurrent) for
d <2, and some fraction of the discrete RW paths “leak
to infinity” for d >2. Cj is this fraction. Explicit calcu-
lation of CJ for lattice RW’s shows that the escape prob-
ability depends on the local lattice structure (see Sec. 1V)
and the spatial dimensionality. The hypercubic lattice
C; has the simple integral representation [39]

cr=1/d fo""[e*vo(x)]ddx , (A8)
where Iy(x) is a modified Bessel function. [Note that
e *I,(x)~x ~!/2 for large x, so the integral in Eq. (A8)
diverges for d <2, thereby implying CJ(d =2)=0.] Ana-
lytic calculation of the equivalent of Eq. (A8)ind =3 isa
classical problem [40-42], and the result is given in Eq.
(3.3c). Montroll [39] has developed a 1/d expansion for
cl,

Cr~1—(172d)[1+2/(2d)+7/(2d)*+35/(2d)?

+215/02d)*+ - - - (A9)

L, d—

for the hypercubic lattice by simply expanding the Bessel
function in Eq. (A8). The probability that the RW re-
turns to the origin equals R} =1—CJ. Gerber and Fish-
er [27a] have also developed [rediscovered independently
by us before realizing the relation between T (spherical)
and Cj discussed in Sec. VI] a formal expansion for the
equivalent of CJ about d =2,

C}~(w/2)(d —2)—(w/4)[1+8In(8/m)+7](d —2)*

+0W(d—2)), d—2+, (A10)

where 7 denotes Euler’s constant. Figure 13 compares
the leading order expansion of CJ about d =2 and the
fifth order 1/d expansion with exact numerical results
(solid line). The error involved in truncating the series
(A9) is discussed by Gerber and Fisher [27a]. Their dis-
cussion of the convergence properties of CJ is instructive
because it is one of the few cases where the infinite order
1/d expansion is known. The formal series in Eq. (A10)

about d =2 is particularly poorly behaved because d =2
is a nonanalytic point for CJ (see Fig. 13).

The escape probability CJ can also be calculated
[91,92] from an average of the return probability U(d,n)
to the origin at the nth step [see Eq. (A3)],

C;zl/z Uld,n), U(d,0)=1. (A11)

n=0

Figure 14 represents the exact [93,94]) U(d,n) in d =1,
d =2, d =3 for n =22, which shows how the probability
of the RW to return to the origin at the nth step (regard-
less of its previous history) decays with increasing n [see
Eq. (A12)]. The lower the dimensionality, the higher the
return probability and the longer the tail of the curve.
Indeed, CJ vanishes for d <2 because the sum of U(d,n)
in Eq. (A11) diverges because of this slow decay for d <2.

0.6 71— L — - J
0.5  § !
= 04 7
&2 03 .
— N
= \
) \
N
\
02 .
N
N
\
0.1 N 1
N
S

0.0 .
0 4 8 12 16 20 24

FIG. 14. The probability that a RW will return to origin at
the nth step, U,(RW,d). Histograms are exact lattice data and
continuous curves correspond to asymptotic power laws (n ~¢/2)
[92] for d =1,d =2, d =3 (top to bottom). Note that the return
probability is zero for odd n.



1812

0.010 — [ 7 T T T T T T T

0.008 -

0.006

n

0.004 |-

U (SAW)

0.002

0.000 ——
2 6 10 14 18 22 26

n

FIG. 15. The fraction of ring SAW’s relative to linear SAW’s
ind =2, U,(SAW,d =2). Ring fraction vanishes for odd » as in
the RW analog (see Fig. 14). Solid line denotes the asymptotic
power law scaling. Direct enumeration data is taken from Ref.
[95].

Figure 15 presents the “ring closure probability”
U,(SAW) for SAW’s in d =2 (square lattice) obtained
from direct enumeration [95]. U,(SAW) is defined as the
number of self-avoiding rings of length n divided by the
number of self-avoiding chains without the ring closure
restriction. The sum in Eq. (A11) with U, (SAW) replac-
ing U (d,n) would seem to be convergent, so that it seems
likely that the escape probability of a SAW is nonzero in
d =2. This question deserves further consideration since
this geometrical property of SAW’s probably is impor-
tant for understanding the finiteness of a(d =2) (see
Fig. 1).

An approximation to CJ can be obtained by utilizing
an asymptotic expansion for U(d,n) given by Domb
[92a]. The leading order relation

U(d,n)~2(d /2m)%%(2n) 424+ 0(n "4 1272) (A12)

is presented as the solid curves in Fig. 14. This asymptot-
ic limit is approached rapidly with increasing n. We then
insert Eq. (A12) into Eq. (A11) to obtain the rough esti-
mate

Cr=1/[1+f,6d/2)], fy=2d/2m)??2742, (A13)

where {(x) is the Riemann § function. Inclusion of the
higher order corrections to Eq. (A13) leads to a power
series sum of the Riemann § functions [96]. The leading
order estimate of Eq. (A13) in d =3 equals 0.621 rather
than the exact value 0.659 - - -+ from Table II. It should
be possible to refine this direct approach of calculating
CJ from the return probability U(d,n). This should be
very useful in the case of Lévy flights in d =3 where gen-
eral results for C; are unknown and asymptotic results
for U(d,n) are available [43].

APPENDIX B: THE PERIODICITY
OF RW RECURRENCE

The frequency of RW self-intersections is directly re-
lated to the average period between RW intersection
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points along the chain contour. Many of the interesting
properties of RW’s are associated with the fluctuations in
this recurrent random process. The periodicity of RW
recurrences is necessarily considered separately for “re-
current” walks (CJ;=0) and “transient” walks (CJ >0)
since in the latter case a fraction of the paths never revisit
a given point of the RW path. We calculate the average
recurrence period and briefly discuss the relation between
various methods for evaluating recurrence properties of
RW’s.

1. Recurrent walks, C} =0

Since recurrence to the origin is certain, the period of
recurrence can be expected to correspond to the number
of distinct sites visited (S, ) by the RW. This relation is
exact for a deterministic periodic orbiting trajectory of
any kind for a time longer than the orbital period. We
show that the corresponding average “period” for a re-
current random walk scales like S, ) for large n.

To obtain the asymptotic behavior of {S, ) for large n,
it is useful to pass formally to the continuum limit of the
discrete sum [22] by defining (S(n)) as

n n
(5,)=3 Cld—(s(m)=["C(\,ndr, (B
k=1
where C(n,d) is given by Eq. (A5). C(7,d) is an entire
function, so that the integral in Eq. (B1) can be per-
formed term-by-term to give

(S()y=n'3 {(z,/u2 D1+, (wD]}E/TQ2+kg,(v)
k=0

(B2a)

where z,, U, xs and ¢p(v) are defined in general for Lévy
flights (v variable) as

z=pOn”"”, ¢, (M=1—dv, ur=¢,»,

0<¢,(v)=1, 1=1/v=2. (B2b)

The constant is determined by the probability that the
walk returns to the origin at the nth step and for ordinary
continuum RW’s p (0,v=1) equals (d /2m)%/%. The large
n asymptotic expansion (0<@,(v)<1) of {S(n)) equals

(S(n))~{sin[m¢,(v)]/m[1—¢,(v)]}

Xnz, [1+0(z; D+ -+ ], (B3a)

z,—>® ,

which reduces for ordinary RW’s (v=1) in d =1 to the
asymptotic limit

(8(n))~2/mnz, '=(8/m)'*n'?, n—ow (B3b)

which is the well known Pdlya result [36,81,90] for
discrete RW’s (v=1) on a 1—d lattice. More generally,
(S,) in Eq. (B3a) scales as n"” for large n in d =1, an
asymptotic result of Gillis and Weiss [97] under the con-
ditions (0<¢,(v)<1, 1<1/v<2). They do not obtain
the prefactor explicitly, however.

Treatment of the ¢,(v)—0+ limit for (S, ) is delicate.
Note the divergent character of the expansion coefficients
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of Eq. (B2a) in this limit. There are logn corrections in
the ¢,(v)—0+ limit associated with the transition be-
tween the point recurrence and point transience of RW
paths and analytically corresponding to a change from
weakly singular to a strongly singular kernel in Eq. (A4).

Renormalization group calculations [88] show that
C(n,d) vanishes logarithmically as
C(n;¢,—>0+)~4,/Inn, n—o , (B4)

where A4, is a nonuniversal constant. Thus, the number
of distinct sites visited (S, ) scales in the é,—0+ (or
¢,—0+) limit as [36,98]

(S,)~A,n/lnn, n—w , (BS)

where A, is a lattice-dependent constant.

A relation between (S, ) and the mean recurrence time
(7, ) for a random walk to return to the origin is estab-
lished through a renewal equation. Renewal equations
come in pairs, and the complementary equation to Eq.
(A3) is given by

n—1

Unzzfn—kUkr Upy=1, O=U, =0, , (B6)
k=0

where U, is the probability that the RW returns to the
origin at the nth step (regardless of its past history), and
f, is the probability that the return occurs (first passage
process) at exactly the nth step. Equation (B6) is a super-
position principle for point return probabilities and pro-
vides the starting point of lattice RW calculations for
(S,) and other RW properties by Montroll and Weiss
[36,39], and many others following them. Equation (B6)
is also the fundamental equation of Feller’s fluctuation
theory for recurrent events [47a] and, thus, has a
significance beyond the particular RW applications dis-
cussed here.

The meaning of transience and recurrence terminology
can be appreciated by considering the number of visits to
the origin, which equals [21,22] (see Appendix A for dis-
cussion of Uy ),

n
N,=3 U, U,=1. (B7)
k=0

Since U,=U(n,d) asymptotically (n— o) scales as
U,~n ~4v for random walks, the average number of
visits V,, diverges as n — o for d <1/v and is finite [see
Eq. (B18)] for d > 1/v as a consequence of the properties
of the Riemann § function. Thus, d =2 is a critical di-
mension above which lim, , N, approaches a constant
value N*(d)>0.

The number of renewals N, —1 of a walk to the origin
is contrasted with the mean period (loop length) of the
RW path lengths between recurrences to the origin. To
calculate this quantity, we first note a theorem of Feller
[47], which indicates that if N, approaches a fixed point
value N * >0 for large n, then the associated renewal pro-
cess is uncertain. In other words, some RW paths under
these conditions never return to the origin, so that a re-
normalization of the renewal probabilities f, is neces-
sary. Specifically, we define the “norming constant” R, :

M:

R,=3 fi. (BS)

k=1

The limit lim,_, , R, equals unity if return to the origin
is certain (d <1/v) and equals the fixed point value R}
(0<RJ <1) if the return to the origin is uncertain. The
mean recurrent time {7, ) is then defined as

(V=S kfi /S fu= kfi/R, . (B9)
k=1 k=1 k=1

This is a conditional mean recurrence time because of the
presence of the norming constant in the denominator
[99]. In other words, the average in Eq. (B9) is limited to
those paths that return to origin while escaping paths are
disregarded.

We establish a connection between Eq. (B9) and the
survival function C(d,n) by noting that the escape proba-
bility C(d ;n— 0 )=CJ equals [21,22]

Ci=1-R,

ci=1/3 U, (B10)
k=0

and, more generally,

n
Cld,n)=1—3 fi . (B11)
k=1
Thus, we observe the “first passage probability” f, is the
discrete derivative of C(d,n),

fn=—[C(d,n)—C(d,n —1)]=—AC, , (B12)

so that the mean recurrence time {7, ) can be rewritten
as

n n
(r))=3 kACk/E AC, . (B13)
k=1 k=1
The limiting behavior {7,) of recurrent walks (R} =1)
can be formally obtained by taking the continuum limit
of Eq. (B9)

(r,)~ ["t(dC(n)/dr)dr . (B14)
We relate this average to the number of distinct sites
visited through Eq. (B1) to obtain

(r,)~ ["t(d?s, /dt?)dt ~ A;n?" (B15)
which scales as (S, ) (d <1/v) [see Eq. (B3)]. Thus, the
number of distinct sites visited (S, ) for recurrent RW’s
and characterizes, roughly speaking, the average period
of the random-walk recurrences. This period grows with

increasing chain length, reflecting the strong fluctuations
of recurrent RW’s.

2. Transient walks (0<CJ <1)

For d greater than 1/v, the RW’s are transient
[C} >0; see Eq. (A11)], and (S, ) is expected to have the
same asymptotic variation as the Wiener sausage volume
(v, ) [see [49] and Eq. (5.6)]
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(S,)~Crn+{z, /d(v)[1—¢(v)]}
X(CF)P*+O0(const), d>1/v,
(B16)
z,=p(0)n?Y, ¢(v)=ev, e=(2/v—d),

where p (O) governs the probability for the RW to return
to the origin U, (n,d,v)~p(0)n ~?". (The constant p (O)
depends on the lattice structure [43b, 45].) The continu-
ous chain analog of (S, ) in Eq. (B2a) reduces to Eq.
(B16) where C;=1.

Evidently, only the fluctuation term survives the
second derivative in Eq. (B16) so that we have asymptoti-
cally,

d’S(n)/dn*~n¥"72,  ["t(dS (n)/dn?)dt ~n?",
(B17)

where constants of proportionality are unspecified in Eq.
(B17). The integral in Eq. (B17) diverges for the inter-
mediate dimension range, 1/v <d <2/v, despite the ex-
istence of the finite limit for the number of visits to the
origin in this range of dimensions,

lim N, —>N*,

n— o

1/v<d<2/v. (B18a)
In the strongly transient [22b] case (d >2/v), where the
renewal probability U, decays rapidly, the integral in Eq.
(B17) approaches a finite limit

lim (r,)—>7*, (B18b)

n— o0
where the correction terms to the scaling in Eq. (B17) are
evidently important for calculating 7* in the strongly
transient regime. Thus, the strongly transient RW’s re-
turn to the origin with a finite period. For ordinary RW’s
(V:—;-), strong transience corresponds to d >4. The limit
in Eq. (B18b), however, diverges for weakly transient
RW’s (1/v>d >2/v). Weakly transient walks thus have
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a well-defined number of visits to the origin, but 7*
diverges because of the large fluctuations. This is the
motivation for discriminating weak from strong transi-
ence.

The number of visits to the origin of a transient RW is
directly related to the survival probability CJ. Equations
(A11) and (B7) imply the identity

N*=1/C}, d>1/v. (B18¢)

Exact values of N* for ordinary RW’s (v=1) are shown
in Fig. 16, and the divergence of N* as d -2 is ap-
parent. The limit N*(d — o )=1 reflects the first step of
the walk. We also observe that N* is related to the num-
ber of distinct sites visited by a transient random walk

lim ({S,)/n)~1/N* . (B18d)

n— o
This is the well-known ergodic theorem of Spitzer [49a]
and Aldous [100a). The importance of N* as a rate of
RW exploration also holds for finite lattices. Aldous
[100a] considers the average amount of time n for a RW
to visit every point of a large finite connected set, and
Nemirovsky, Martin, and Coutinho-Filho [101] have nu-
merically investigated the fluctuation corrections to this
“covering time” numerically. The covering time, similar-
ly to Eq. (B18d), is inversely proportional to N* and is
proportional to MnW, where N is the number of lattice
sites in the confining finite lattice region. (/N corresponds
to the volume of the confining region.) The average
amount of time (T ) required to visit any prescribed lat-
tice point in a large and connected finite lattice region of
N lattice sites asymptotically equals [102]

(T)~WN/N* (B19)
for transient walks and N large. Equation (B19) has im-
portant applications [102].

We summarize the results obtained from the above for
the conditional mean recurrence time {7, ):

N =1 /¢

FIG. 16. The number of RW returns to the
origin, N*=1/CJf. For high dimensions, the
number of returns approaches 1, correspond-
ing to the first step.
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n?, 0<d<d/v (recurrent) (B20a)

n?=%, 1/v<d<d/v (weakly transient)
()~ (B20b)
7*, d>2/v (strongly transient) , (B20c)

where the prefactors are unspecified. These scaling rela-
tions are given previously by Hughes [99], but rather
different calculational methods are involved. We briefly
mention the connection of our computational approach
to RW recurrence properties to more conventional ap-
proaches in the physics literature.

Following Feller [47a] and Montroll [39], the usual
method of solution for the recurrent properties of RW’s
utilizes discrete Laplace transform methods. We define
the generating functions (discrete Laplace transforms)

n
F,(x)=3 fix* fo=0, x=e* s>0, (B21a)
k=0
n
U,(x)=T3 Ugx*,
k=0
lim F,(x)=F*(x),

n— oo

lim U,(x)=U*(x) ,

n— ©

(B21b)

which upon insertion into the discrete renewal equation
Eq. (B6) gives
U*(x)=1+F*(x)U*(x) . (B22)

We then deduce the limiting long chain behavior [103]
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from the ““initial value theorem” of Laplace transform
theory

F*(s—0+)=R;=1—1/U(s—>0+)=1—-CJ (B23a)
and {7, ) similarly equals
(7,)= lim [d InF,(x)/d(Inx)]
s—0+
=3 kfse ™[ 3 fre " (B24)
k=1 k=0 s—0+

The generating function approach is very economical for
calculating the asymptotic properties of RW’s, while the
discrete integral equation approach has its own advan-
tages, such as the ease with which contact can be made
with continuum integral equation and path integral ap-
proaches to RW recurrence properties.

As a final comment regarding the continuum limit of
the renewal Eq. (B6), it is also useful to observe that this
equation can be rearranged as

n—1

Upir=fo1t 2 Unsr—i fic » (B25a)
k=0

which has the continuum (Volterra equation) analog [see
also Eq. (A4a)]

Um=f(m+ ["U(n—7)f (1)d7 . (B25b)

The limiting variation of continuum random-walk return
probability U (n) for large n is governed by the moments
of the renewal density function f(n), and distinct
“universality classes” exist according to whether the
second or first moments of f (n) exist [47].
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